Distributed Random Projection Algorithm for Convex Optimization
نویسندگان
چکیده
منابع مشابه
Distributed Stochastic Subgradient Projection Algorithms for Convex Optimization
We consider a distributed multi-agent network system where the goal is to minimize a sum of convex objective functions of the agents subject to a common convex constraint set. Each agent maintains an iterate sequence and communicates the iterates to its neighbors. Then, each agent combines weighted averages of the received iterates with its own iterate, and adjusts the iterate by using subgradi...
متن کاملA non-heuristic distributed algorithm for non- convex constrained optimization
In this paper we introduce a discrete-time, distributed optimization algorithm executed by a set of agents whose interactions are subject to a communication graph. The algorithm can be applied to optimization problems where the cost function is expressed as a sum of functions, and where each function is associated to an agent. In addition, the agents can have equality constraints as well. The a...
متن کاملRandom Projection-Based Anderson-Darling Test for Random Fields
In this paper, we present the Anderson-Darling (AD) and Kolmogorov-Smirnov (KS) goodness of fit statistics for stationary and non-stationary random fields. Namely, we adopt an easy-to-apply method based on a random projection of a Hilbert-valued random field onto the real line R, and then, applying the well-known AD and KS goodness of fit tests. We conclude this paper by studying the behavior o...
متن کاملConvex Optimization without Projection Steps
We study the general problem of minimizing a convex function over a compact convex domain. We will investigate a simple iterative approximation algorithm based on the method by Frank & Wolfe [FW56], that does not need projection steps in order to stay inside the optimization domain. Instead of a projection step, the linearized problem defined by a current subgradient is solved, which gives a st...
متن کاملDistributed Random-Fixed Projected Algorithm for Constrained Optimization Over Digraphs
This paper is concerned with a constrained optimization problem over a directed graph (digraph) of nodes, in which the cost function is a sum of local objectives, and each node only knows its local objective and constraints. To collaboratively solve the optimization, most of the existing works require the interaction graph to be balanced or “doubly-stochastic”, which is quite restrictive and no...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Journal of Selected Topics in Signal Processing
سال: 2013
ISSN: 1932-4553,1941-0484
DOI: 10.1109/jstsp.2013.2247023